3的倍数的特征说课稿
在教学工作者开展教学活动前,时常会需要准备好说课稿,通过说课稿可以很好地改正讲课缺点。快来参考说课稿是怎么写的吧!以下是小编整理的3的倍数的特征说课稿,希望对大家有所帮助。
3的倍数的特征说课稿1一、教材分析
《3的倍数的特征》是人教版实验教材小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。
教材的安排是先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑,确定教学目标如下:
1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。
2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。
3.人教版小学数学五年级下册《3的倍数的特征》说课稿:通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。
根据以上的目标,我确定了本课的
教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。
教学难点:3的倍数的数的特征的归纳过程。
二、教法和学法。
根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:
1、创设情景,激趣导入。
2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。
3、采用让学生自主发现的学习方法。
苏霍姆林斯基说:“在小学面临的许多任务中,首要的任务是教会儿童学习”。这里的学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。
下面重点说说本课的教学过程设计,我分以下的六个环节进行教学。
三、教学过程。
一、复习导入。
为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。
下面的数,哪些是2的倍数?哪些是5的倍数。
364、420、515、736、1028、905
让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2、5的倍数,都是从一个数的个位上的情况来判定。而今天,我们将学习新的内容,从而引出课题。(板书:3的倍数的特征)
为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。
二、猜想验证。
由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作
猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。
三、体验新知。
由于学生求知欲空前高涨,学习积极性高。这时我出示了一组这样的数据。
3×1=3、3×2=6、3×3=9、3×4=12、3×5=15、3×6=18、3×7=21……
并引导学生进行观察发现:
3、6、9是3的倍数,但12、15、18个位上的数不是3的倍数,再让学生与同桌合作,动手摆小棒,一人摆,一人记录。顺便提出要求:摆小棒时,每个数位上的数是几,就用几根小棒表示。然后观察各位上的数的和,你发现了什么?此时有的学生可能会说:“12个位上的数不是3的倍数,但1+2=3,3是3的倍数”。同时,学生也发现15、18、21各位上的数相加的和也是3的倍数。于是形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。为了验证这一猜想我随即说道:“这么简单的数你会了,那么大一点的数是否也有这样的规律呢?”,接着我便又出示一组这样的数据:30、31、46、134、156、296、463、405、384。要求学生用最快的速度算出各位上的数的和,可以使用计算器,并让学生把结果填到各自的练习卡纸上,然后先跟同桌说说,再把结果汇报结果给老师,尽可能多地提供机会让学生在实践操作中学习,这也正应了美国数学教育家波利亚所说的:“学习任何知识的最佳途径都是由学生自己去发现的”。
四、归纳总结。
在学习操作验证完成后,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。
五、实践应用。
当学生学会了老师猜数所用的窍门,显然兴致极高,个个跃跃欲试,想一显身手,我便针对小学生的年龄特点和个性差异,以便使不同层次的学生都能得到不同程度的提高,设计了三个不同层次的练习。
练习1:课本P19做一做1。
1,下列数中3的倍数有:
1435451003328767488
(这是一个基本练习,使全体学生都能对新知识有进一步的理解,达到巩固新知的目的。)
练习2:
①P21页(5、6题),在基本练习的基础上我增设了3道发展题。
②把数娃娃送回家。题目如下:
这样设计的目的是通过判断、选择等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)
练习3:P21(7题)
7、在口里填一个数字,使每个数都是3的倍数。
口74口2口4465口12口1
(这是一个综合练习,以检验 ……此处隐藏4164个字……》,否定错误猜想。
在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。消除思维定势,否定旧迁移,以此来激发学生的探究欲望
2.探究实验,发现特征。
学生刚刚学习了2、5的倍数的特征,从观察数的末尾数字到观察这个数的数字和,具有很大的思维跨度。学生很难通过独立的探究得出3的倍数的特征,这时,教师采用的教学策略就显得尤为重要。本节课,教师采用让学生进行拨珠实验的教学策略较好地解决了这个问题。教师引导学生经历拨珠实验,填表观察,思考发现的过程。从而使学生对3的倍数的特征认识随着实验的不断深入而越来越清晰,他们在实验、探究、猜想、验证的过程中,建构起对3的倍数的特征的整体认知。本节课虽然没有生动的教学情境,但这样做巧妙地把学生推上了学习的主体地位,使学生始终沉浸在一种浓厚的探索氛围之中,他们被数学知识本身的魅力所深深吸引。这样的数学学习活动,才是真正的、生动活泼的、富有个性的认知过程。学生通过表象的累积,思维产生了飞跃,脑海中形成了清晰的数学模型。
3、举例验证,总结规律。
让学生在初步发现规律之后,举例验证,体现了从特殊到一般的思维过程。为了验证这一结论,学生用最快的速度算出各位上的数的和是不是3的倍数,并且使用计算器看这个数是不是3的倍数,并让学生汇报验证的过程,尽可能多地提供机会让学生在实践操作中学习,不仅让学生初步学会了举例验证的方法,而且体现了辨证唯物主义的思想。
活动三应用规律体验感悟
在这一部分,为使不同层次的学生都能得到不同程度的提高,我设计了四个不同的练习。力争突出重点,突破难点,在遵循学生认知规律的基础上,体现基础性、层次性、灵活性、生活性、趣味性。第(1)题是基本题,使全体学生都能对新知识有进一步的理解,达到巩固新知的目的。有可能的话可以让学生在快速判断中感悟把3的倍数先去掉的判断技巧;第(2)题以图的的形式出示,引导学生利用所学解决生活中的实际问题;第(3)题是在每个数的□里填上一个数字,使这个数是3的倍数。以检验学生综合运用知识的能力,达到举一反三的效果,提高思维的灵活性。第(4)题旨在通过灵活的形式发散学生的思维。
活动四反思总结自我提高
这一环节通过师生交流的形式,使学生积极回忆,谈谈这节课的收获。把知识、方法再现的同时,亦体现学生的情感价值观,进一步反思总结,自我提高。
整节课让学生经历“猜想—验证—操作—再次猜想—再次验证—得出结论—解决问题”的探究过程,实现课程、师生、知识等多层次的互动。整个教学是把知识的传授、思维的训练、学习方法的指导、学习能力的培养、数学思想方法的渗透有机结合起来,取得教学效益和生命质量的整体提升。
3的倍数的特征说课稿5一、教材简析
《3的倍数的特征》是北师大版第九册的内容,属于“数与代数”领域中有关“倍数与因数”的知识。学生在已经学习“2,5倍数的特征”的基础上,继续学习3的倍数的特征。
二、教学目标
1.经历探索3的倍数的特征的过程,理解3的倍数的特征,能判断一个数是不是3的倍数。
2.发展分析、比较、猜测、验证的能力。
三、教学思路
本节课我紧紧抓住猜想→观察→举证→归纳这条主线展开教学,让学生经历有效探究的学习过程。
基于以上想法,本课设计以下两个大环节:
探究 深化
四、教学过程
一.探究
这个部分,我为学生提供了四个探究平台:
(1)猜想
复习:2和5的倍数特征。猜测3的倍数的特征。
(2)观察
在百数表中找出所有3的倍数,通过观察否定猜想。
借助计数器,在百数表中任意选一个3的倍数,用计数器将它拨出来,并记录下拨这个数用了几颗数珠。再观察记录表,你能发现什么?
学生很快能发现所用数珠的颗数都是3的倍数。
当学生的认知出现困难时,借助计数器来研究3的倍数的特征,直观地降低了学生观察发现特征的难度,使得所学新知更贴近学生的“最近发展区”。
如果给你3颗数珠,那你猜一猜在计数器上拨出100以内的数会是3的倍数吗?给出4颗、5颗…….,自己拨一拨,发现了什么?
经过研究,学生发现100以内是3的倍数,所用数珠的颗数都是3的倍数,而不是3的倍数,所用数珠的颗数都不是3的倍数。也就是说:100以内的数,如果在计数器上拨它,所用数珠的颗数是3的倍数,这个数就是3的倍数。
(3)举证
我们之前的研究结论对所有的数都适用吗?学生马上会提出研究比100更大的数。
小组合作:随意想出多个大于100的数,先用计算器算一下,然后记录下来。最后用计数器拨一拨看有什么发现?
经过合作探讨,交流汇报,学生发现在这些较大的数当中,之前的研究结论依然适用。
所研究的对象范围越广,代表性越强,研究结论就越可靠。本环节通过“更大的数”和“随意想”两方面,让研究对象范围更广,培养了学生缜密思考的意识和习惯。
(4)归纳
现在如果给你一个数,不做除法,你怎样快速地判断它是不是3的倍数呢?咦!我发现有的同学没有用计数器也判断对了,还很快呢!你们是怎么想的呢?学生会说所用数珠的颗数其实就是各个数位上的数字之和。
“各个数位上的数字之和”这种稍复杂的表述方式,由学生在操作中自然归纳得出,突出了学生探究学习的自主性,彰显了学生的主体地位。
二.深化
让学生拿出事先准备好的从0到9的十张卡片,在游戏中解决以下问题:
(1)你能任意选3张卡片,摆出一个3的倍数吗?用你选的这3张卡片,还能摆出不同的3的倍数吗?一共能摆出几个?
(2)随意抽取3张卡片,在它的基础上加卡片,使摆出的数还是3的倍数。如果加一张怎样加?加两张呢?三张?……你最多能用到几张?
(3)当十张卡片全部用上时,我们就得到了比较大的3的倍数,你能快速去掉一些卡片,让这个数依然是3的倍数吗?
如果要去掉一张卡片,你怎么做?如果要去掉两张?三张?……
刚才的练习有没有给你什么启发?
用你们的方法判断下面的这些数是不是3的倍数:
36996969336, 1827457874。
判断数位多的数是否是3的倍数,运用常规方法比较麻烦。如何突破这一难点?通过这一系列的卡片游戏,学生在操作中自然而然地摸索出解题的捷径,完成了对所学知识的拓展。
各位老师,刚才我描述的这个教学过程,是让学生在探究3的倍数的特征过程中不但为学生积累了数学活动经验,而且也积淀了基本的数学思想:让学生逐步领悟到猜想、观察、举证、归纳是解决数学问题的一般方法。
谢谢!